The Therapists Role in Spasticity Management
Indications and Recommendations for Chemodenervation
M. Simeo, PT, MS
The Therapists Role in Spasticity Management

Indications and Recommendations for Chemodenervation

1. Recognize the importance and benefits of assessing spasticity within a functional context over time.

2. Understand the clinical problem solving process therapists use to identify indications and goals for spasticity management.

3. Appreciate the need for and benefits of a multi-disciplinary team in managing post-stroke spasticity for optimal treatment benefit.
Current Research & Clinical Interpretations

Spasticity: Definition

- “...motor disorder characterized by a velocity dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex...” (Lance 1980)

 - Characterization spasticity during passive movement
 - Assumptions:
 - Increased muscle activity during stretch phase due exclusively increase stretch reflex activity.
 - Velocity dependent increase in resistance to passive stretch due exclusively to spasticity.
Current Research & Clinical Interpretations

Spasticity: Definition

- “........ results from abnormal intra-spinal processing of primary afferent input” (Young 1994)
- Afferent input other than passive stretch
 - Cutaneous, Proprioceptive, Supraspinal
- Allows for measurement & description of spasticity under passive and active conditions
Current Research & Clinical Interpretations

Spasticity: Definition

“... disordered sensori-motor control, resulting from an UMN lesion, presenting as intermittent or sustained involuntary activation of muscle.” (Pandyan 2005)

• Not pure motor disorder ---disordered motor control

• Insufficient evidence to support that abnormal muscle activity observed in spasticity due exclusively stretch reflex hyperexcitability. (Payden 2005)
Clinical Implications

• Cannot differentiate stiffness/resistance due tonic stretch reflex activity alone.

• Changes in resistance to passive movement not uniquely related to muscle activity.

• Confounding factors:
 • inertia limb segments; abnormal voluntary ms activity; changes in visco-elastic properties soft tissue & joints; structural changes in intrinsic & external muscle properties (Pandyan 2005)
Post-Stroke Spasticity (PSP)

• Not a single entity (phenomena)
• Demonstrates considerable variability
 • Correlates to intensity sensory stimuli
 • Lesion location (cerebral cortex – primary, secondary, supplementary motor area SMA)
• Does not conform to standard definition
 • Diverse manifestations
 • Uncertain pathophysiology

(Ward 2012)
Observations/Associations
Post-Stroke Spasticity

Internal Factors Affecting Post-Stroke Spasticity
• Noxious Stimuli: pain, cut, sore
• Changes Medical Condition: decubitus ulcer, UTI, infection, fever
• Emotions: anger, anxiety, stress
• Physical Exertion / Effort

External Factors Affecting Post-Stroke Spasticity
• Weather – cold temperatures
• Time of Day

(Cheung 2015, Li 2015)
Clinical Implications
Physical & Occupational Therapists

Given variability of spasticity, number of internal & external factors affecting spasticity & that spasticity has both an passive and active component...

• Challenging with clinical assessment to identify at the impairment level whether and to what extent spasticity impacts a client’s functional abilities.
Evaluation Post-stroke Spasticity

Subjective

1. Functional History
 - Sleep Disturbances
 - Limited Mobility / Ambulation
 - Interference with Self-Positioning, Self-Care, Transfers
 - Decreased Ease Care by Caregiver (Passive Function)
 - Limited Functional Performance d/t Inability Use Affected Extremity
 - Poor Quality of Life
Evaluation Post-stroke Spasticity

Subjective

2. Symptoms Suggestive of Spasticity
 - Muscle Stiffness / Tightness
 • Muscle weakness
 - Muscle Spasms
 - Clonus / Shaking
 - Difficulty Performing Voluntary Movements
 - Limb Deformity (cosmetic / functional concern)
 - Pain
 • Differentiate btw neuropathic / musculoskeletal pain
Evaluation Post-stroke Spasticity

Objective Findings

1. Functional Assessment
 Observe Client Perform Functional Activities in Different Environments, Variable Conditions

Mobility: Gait & Gait Related Activities
- indoor, outdoor, distractible, social, unpredictable environment
- over, around obstacles, thru doorways, up & down stairs
- stooping to floor, sit to stand
- slow, fast speeds
Evaluation Post-stroke Spasticity

Objective Findings

1. Functional Assessment
 Observe Client Perform Functional Activities in Different Environments, Variable Conditions

 Participation Activities, ADL’s:
 - driving
 - work related responsibilities
 - activities related to role spouse, parent, grandparent
 - participation in hobbies / interests
 - dressing, bathing, hygiene
 - cooking, cleaning, mowing the lawn
Evaluation Post-stroke Spasticity Objective Findings

2. Assess Specific Body Systems

Objective: Identifying system impairments contributing to functional limitations.

– Differentiate contribution of spasticity from other neuromotor and/or musculoskeletal impairments limiting functional abilities *(Thibaut 2013) (Sunnerhagen 2013)*
Evaluation Post-stroke Spasticity

Objective Findings

• Neuro-motor Control - Spasticity
 – Clonus (passive stretch)
 – Flexor / Extensor Muscle spasms (response to stimuli)
 – Co-contraction agonist + antagonist (during active movement)
 – Associated reactions
 – Dyssynergic stereotypical spastic dystonia (active movement)
 – Synergistic v. Selective voluntary movement (active movement)
Evaluation Post-stroke Spasticity

Objective Findings

• Neuro-motor Control
 - Muscle Weakness
 - Impaired Coordination (Decreased timing, sequencing: reciprocal; speed; ability to perform alternating mvt.)
 – Impaired Motor Control & Planning
 – Muscle Fatigability
Implications of Spasticity
Related to Post-Stroke Motor Recovery

- Spasticity along with Motor Weakness, Impaired Coordination, Motor Control or Planning → Result in Dynamic Clinical Presentation

- Brunnstrom’s description, post-stroke motor recovery parallels emergence, eventual disappearance of spasticity (Brunnstrom 1966, 1970) (Li 2015)

- Motor Recovery may stop along this continuum and spasticity persists.
Evaluation Post-stroke Spasticity

Objective Findings

3. Perform Special Tests

• Velocity Dependent Resistance to Passive Mvt./ Assess severity spastic hypertonia.
 • Ashworth Scale
 • Modified Ashworth (MAS)
 • Tardieu Scale (TS)
Evaluation Post-Stroke Spasticity

Special Tests

Modified Ashworth

- Designed Measure Spasticity (spastic hypertonia) Clients CNS Lesion *(Rehab Measures)*
- Actually Measures level resistance passive movement
- Measures Combination: Spasticity (Stretch Reflex Response) **PLUS** Non-contractile soft tissue properties (intrinsic properties muscle, tendon, connective tissue) + Spastic dystonia (persistent muscle activity) *(Thibaut 2013)*
Evaluation Post-Stroke Spasticity

Special Tests

Modified Ashworth (Stroke Specific)

- Reliability differs depending on the motor group assessed.
- General: Mod – Good Intra-rater reliability
 - Poor – Mod Inter-rater reliability *(Thibaut, 2013)*
 - UE: MDC 1 point; *(Shaw 2010)* MCID Not Established
 - LE: MDC, MCID Not Established
 - Intra-rater reliability Adequate; Greatest agreement on Grade 0 = Normal
 - Inter-rater reliability Poor; *(Blackburn 2002)*
Evaluation Post-Stroke Spasticity

Special Tests

Modified Ashworth

Limitations:

- Can not control velocity passive movements
- Cannot distinguish among various neuromuscular components of spasticity across range positions + velocities
- Does not measure PSS effects resting posture; observed associated reactions; or active/voluntary component spasticity \(\text{(Sunnerhagen 2013)}\)
Evaluation Post-Stroke Spasticity

Special Tests

Fugl – Meyer Assessment (FMA)

• Quantitative evaluative instrument measuring sensorimotor recovery after stroke (Fugl-Meyer 1975)

• Items Motor Domain incorporate components sequential stages of motor recovery described by Twitchell, Brunnstrom (Brunnstrom 1966, 1970) and include concept posture & selective movement (Bobath 1970) (Gladstone 2002)

• Motor Domain excellent interrater, intrarater reliability, construct validity, as indicator motor impairment severity across different stroke recovery time points (Rehab Measures)
Evaluation Post-stroke Spasticity

Objective Findings

4. Identify Musculoskeletal Impairments

- Differentiate neural component (spasticity) from non-neural component (musculoskeletal) – is this possible?
 - Spasticity & Contractures BOTH characterized by increase resistance to passive joint movement
 - Spasticity: Involuntary muscle contractions OR Musculoskeletal Impairment: structural changes in soft tissue

 Cycle: Spasticity + Weakness → Contracture → Spasticity (Katalinic 2016)
Evaluation Post-stroke Spasticity

Objective Findings

4. Identify Musculoskeletal Impairments
 • Thorough Musculoskeletal Assessment Assist in Distinguish Clients Symptoms:
 • Stiffness (spasticity v. joint arthritic changes, capsular tightness, muscle shortening, joint malalignment)
 • Pain (spasticity v. capsular tightness, tendonitis/bursitis, joint instability; malalignment; poor biomechanics)
 • Limitations in voluntary control (spasticity v. weakness of antagonist)
Evaluation Post-stroke Spasticity

Clinical Assessment

- Identify Impact Spasticity on Functional Abilities
- Determine if Medical Management of Spasticity is Indicated
 - Minimize Client’s Symptoms
 - Prevent Secondary Impairments Related to Spasticity
 - Enhance Potential for Motor Recovery
 - Optimize Activity / Functions
 - Passive Function (Ease of caregiving)
 - Active Function (Use Affected Extremities)
 - Mobility (Gait, Gait Related Activities)
Evaluation Post-stroke Spasticity Clinical Assessment

• Establish Realistic Goals / Expectations with client
 • Willingness to pursue consult with Provider
• Refer Client to Provider for Consultation re: Spasticity Management.
• Provide recommendations re: potential muscle groups or muscles to target with BoTNX based on client’s subjective history, functional assessment, objective clinical findings
Multidisciplinary Team
Managing Post-Stroke Spasticity

Collaborative Relationship

OhioHealth Stroke Prevention Clinic
&
Neurological Outpatient Rehabilitation
Multidisciplinary Team
Managing Post-Stroke Spasticity

Clinical Assessment

• Identify Impact Spasticity on Functional Abilities
• Determine if Medical Management of Spasticity is Indicated
• Establish Realistic Goals / Expectations with client
 • Willingness to pursue consult with Provider
• Refer Client to Stroke Prevention Clinic for Consultation re: Spasticity Management.
• Provide recommendations re: potential muscle groups or muscles to target with BoNT based on client’s subjective history and objective clinical assessment
Multidisciplinary Team
Managing Post-Stroke Spasticity

Stroke Prevention Clinic
– Provider, Therapist with Client and Family Member
 Establish Goals
– Provider, Therapist
 • Examine client
 • Prioritize muscles for treatment based on exam findings; recommendations of treating therapist
– EMG Guided Injections: Verify Clinical Decision Making
Multidisciplinary Team
Managing Post-Stroke Spasticity

• Therapist continues treatment s/p BoTN determining:
 – goals achieved
 – dosage administered adequate in reducing spasticity (impairment level)
 – change in client’s symptoms, motor recovery, functional abilities, mobility
 – additional muscle groups should be considered for next round of BoTN

• Communication with Provider at 6 wk follow up re: changes in at the functional and impairment level; changes in recommendations for next round of BoTN

• At client’s 6 wk follow up visit with Provider, the Provider determines amount of BoTN needed for next procedure
Recommendations:
Post-Stroke Spasticity Management (Winstein 2016)

• **Target injection BoNT into localized UE limb ms** → reduce spasticity; increase PROM or AROM; improve dressing, hygiene, limb positioning

• **Target injection BoNT into LE ms** → reduce spasticity interfering with gait function

 Class I : SHOULD be Performed

 Level A: Multiple populations evaluated; Data – multiple randomized clinical trials / meta analysis

 Class I Level A
Recommendations: Spasticity Management (Winstein 2016)

- Physical Modalities: **NMES or vibration** applied to spastic ms. → reduce spasticity temporarily as adjunct to rehab therapy

- Use of **splints, taping NOT recommended for prevention wrist, finger spasticity**

Class IIb: **MAY BE CONSIDERED**

Level A: Rec useful / efficacy well established. Greater conflicting evidence from multiple randomized trials or meta analysis

Class III: **NO BENEFIT**

Level B: Recommendation: procedure/treatment is not useful/effective may be harmful
REFERENCES

• Katalinic OM, Harvey LA, Herbert RD. Effectiveness of stretch for the treatment and prevention of contractures. Phys Ther. 91(1): 11-24, 2011

• Pandyan aD, Gregoric M, Barnes MP, et al. Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil. 27:2-6, 2005
• Prabhu RKR, Swaminathan N, Harvey LA. Passive movement for the treatment and prevention of contracutes. Cochrane Database of Systematic Reviews. 28 December 2013 DOI: 10.1002/14651858.CD009331.pub2

• Young RR. Spasticity: a review. Neurology 44, S12–S20, 1994