Contemporary Concepts in
Multiple Sclerosis

Aaron L. Boster, MD
Systems Medical Chief, Neuroimmunology & Clinical Research
Director, OhioHealth Multiple Sclerosis Center
OhioHealth Physicians Group
Columbus, Ohio
In memory of my mentor, Omar Khan, MD

Your lessons live on in every MS family I treat, every MS fellow I train, every paper I publish and with every learner I teach.
Aaron L. Boster, MD, has a financial interest/relationship or affiliation in the form of:

- **Consultant, Advisor, Speaker** for Biogen; Genentech; Medtronic; Novartis; Genzyme;
- **Grant/Research Support** from Actelion; Roche; Mallenkrodt; Biogen; Teva;

Aaron L. Boster, MD, does not intend to discuss any non–FDA-approved or investigational use of any products/devices.

When slides are not referenced, this represents Dr. Boster’s personal opinions
“The Times They Are A-Changing”

1998:
- Don't get in strangers' cars
- Don't meet ppl from internet

2016:
- Literally summon strangers from internet to get in their car
Learning Objectives

1. Incorporate the following terms into your MS lexicon

- Activity
- Breakthrough Activity
- Worsening
- Progression

- Highly Active MS
- NEDA
- CDI
- NEP
- Brain Atrophy Rates

2. Adopt “Topographical Model of MS” into your delivery of MS care

3. Identify breakthrough activity & Highly Active disease

NEDA: No Evidence of Disease Activity; CDI: Confirmed Disability Improvement
NEP: No Evidence of Progression
Updated Terminology For
Multiple Sclerosis Phenotypes
Relapsing MS

Relapse: An acute, or sub-acute episode of new or increasing neurologic dysfunction followed by full or partial recovery, in absence of fever or infection

+/- Activity

+/- Worsening

+/- Progression

(My Opinion) +/− Highly Active

Activity determined by clinical relapse and/or MRI activity (Gad+ T1 lesions; new/unequivocally enlarging T2 lesions assessed at least annually; if assessments not available, activity “indeterminate”).

Activity¹

- Clinical Relapse*
 and/or
- New GEL or new/unequivocally enlarging T2 lesions

*Relapse: An acute, or sub-acute episode of new or increasing neurologic dysfunction followed by full or partial recovery, in absence of fever or infection.
GEL: Gad Enhancing Lesions; DMT: Disease Modifying Therapy

MS Phenotype Modifiers

Worsening

- Documented increase in neurologic dysfunction/disability as a result of relapses or progressive disease

MS Phenotype Modifiers

Progression

- Steadily increasing, objectively documented, neurologic dysfunction independent from relapse

Primary Progressive: Progressive accumulation of disability from onset

Secondary Progressive: Progressive accumulation of disability after initial relapsing course

+/- Activity

+/- Worsening

+/- Progression

Activity determined by clinical relapse and/or MRI activity (GELs; new/unequivocally enlarging T2 lesions assessed at least annually; if assessments not available, activity "indeterminate").

Progression measured by clinical evaluation, assessed at least annually.

If assessments are not available, activity and progression "indeterminate."

Stable disease.

Identifying “Highly Active” MS: Common Features

Clinical
- Frequent relapses
- Severe relapses
- Incomplete relapse recovery
- Frequent relapses despite DMT
- Early accrual of impairment

Radiologic
- Heavy T2 lesion burden
- Multiple GELs at onset
- Early brain atrophy
- Continued GEL or NEL burden despite DMT

DMT: disease modifying therapy; GEL: gadolinium enhancing lesion; NEL: New or Enlarged T2 bright lesions

Highly Active MS Defined1,2

<table>
<thead>
<tr>
<th>Highly Active MS Defined</th>
<th>Rapidly Evolving Severe MS</th>
<th>High MS Disease Activity</th>
<th>Rapidly Worsening or Fulminant MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≥2 disabling relapses in previous year</td>
<td>≥1 relapse in the previous year on interferon β</td>
<td>Frequent relapses</td>
</tr>
<tr>
<td></td>
<td>≥1 GEL or significant ↑ in T2-lesion load</td>
<td>≥1 GEL or ≥9 T2 lesions on cranial MRI</td>
<td>Resulting in sustained clinical worsening</td>
</tr>
<tr>
<td></td>
<td>Licensed indication for natalizumab in many regions of EU</td>
<td>Licensed indication for fingolimod in many regions of EU</td>
<td>Occurring despite DMT and repeated pulses of IVMP</td>
</tr>
</tbody>
</table>

GEL: Gad enhancing lesions; DMT: disease-modifying therapy; IVMP: intravenous methylprednisolone.

Risk Factors for Poor Outcomes 5 Years After Diagnosis

Retrospective analysis of 207 RRMS clinic patients

- Examined relative importance of several risk factors to predict worsening (EDSS increase 5 years later)
- Evaluated within 1 year of second attack and ≥ 2 years after first attack

Risk Factors for Poor Outcomes 5 Years After Diagnosis

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Patients, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>First attack at >40 years of age</td>
<td>30</td>
</tr>
<tr>
<td>>2 attacks in first 2 years from onset</td>
<td>38</td>
</tr>
<tr>
<td>Poor recovery (EDSS >1.5) after second attack</td>
<td>28</td>
</tr>
<tr>
<td>Male gender</td>
<td>24</td>
</tr>
<tr>
<td>Motor symptoms at onset</td>
<td>58</td>
</tr>
</tbody>
</table>

Regression analysis & KM survival curves suggested:

1. Poor recovery after 1st 2 attacks best individual predictor of worsening at 5 years after initial diagnosis
2. Having 3-5 individual risk factors associated with higher risk of worsening ($P < .001$)

EDSS: Expanded Disability Status Scale.
Limitations to the New MS Phenotypes in Multiple Sclerosis
Limitations of Current MS Phenotypes:
Uncertainties regarding key assumptions

- Is relapsing MS also progressive from onset? (Not encapsulated in “RRMS without activity”)

- Is progressive MS inflammatory throughout the course? (Not encapsulated in “progressive MS without activity”)

Limitations of Current MS Phenotype Descriptions

New Conceptual Models to Understand Multiple Sclerosis
Updated Conceptual Model:
Traditional to “Leaking Swimming Pool”

1. Lublin FD et al. Neurology. 2014;83
Topographical Model of MS; “Leaking Swimming Pool”

Unified visualization of clinical course

1. Water surface = clinical threshold
2. Volume of water = functional reserve
 - Fluid variable across time: periods of depletion, renewal, and decline over long-term
3. Pool Floor = CNS
 - Model reflects relative variation in functional reserve in different parts of CNS

1. Adapted with permission from Krieger et al. Neurology: Neuroimmunooogy & Neuroinflammation. October 2016;3
Inflammatory Activity: “Base Effects”

- Lesions rise up as topographical peaks from pool base
- Water surface depicts clinical threshold
 - 1. clinical attack
 - 2. silent MRI lesion
- Model reflects predilection for ON, TM & brainstem syndromes

1. Adapted with permission from Krieger et al. Neurology: Neuroimmunooogy & Neuroinflammation. October 2016;3
Progression: “Surface Effects”¹

- Progression = slowly dropping water level, representing depletion of functional reserve

- CORE HYPOTHESIS: progression clinically recapitulates the form of prior activity, incrementally exposed above surface (clinical threshold)

- Also explains re-emergence of symptoms with Uhthoff’s phenomenon and pseudo-relapses

¹ Adapted with permission from Krieger et al. Neurology: Neuroimmunooogy & Neuroinflammation. October 2016;3
New Outcome Measures in Multiple Sclerosis
Evolving Clinical Outcome Measures

Traditional:
- Annualized Relapse Rate Reduction
- Confirmed Disability Progression
- New T2 bright or GEL
 “I can make you get worse slower”
 - Doctor

Contemporary:
- No Evidence of Disease Activity
- Confirmed Disability Improvement
- No Evidence of Progression
- Improved Brain Atrophy Rates

Traditional clinical outcome measures are still relevant in clinical trials and clinical practice; GEL: Gad Enhancing Lesions
New Outcome Measures

No Evidence of Disease Activity (NEDA)
No Evidence of Disease Activity (NEDA)

NEDA 3
- No relapses
- No NEL or GEL
- No progression of disability

Potential Future NEDA:

NEDA 5
- 4 + CSF NF negative

NEDA 6
- 5 + No cognitive dysfunction

NEL: New or Enlarged T2 lesion; GEL: Gad Enhancing Lesion; NF: neurofilament

Adapted with permission (david.baker@qmul.ac.uk) Understanding Clinical Trials. https://www.slideshare.net/mstrust/understanding-clinical-trials-55198048
Predictive Value of 2 years of NEDA3 on progression at 7 years

<table>
<thead>
<tr>
<th></th>
<th>Whole Cohort</th>
<th>NEDA at 7 years</th>
<th>Non-NEDA at 7 years</th>
<th>NEDA at 2 years</th>
<th>Non-NEDA at 2 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>219</td>
<td>17</td>
<td>199</td>
<td>60</td>
<td>158</td>
</tr>
<tr>
<td>Age at 1st visit (mean±SD)</td>
<td>40.2±9.5</td>
<td>42.3±7.7</td>
<td>40.1±9.7</td>
<td>41.9±7.9</td>
<td>39.6±10</td>
</tr>
<tr>
<td>Dz Duration at 1st visit (mean±SD)</td>
<td>6.6±7</td>
<td>9.9±8.9</td>
<td>6.3±6.9</td>
<td>7.3±7.8</td>
<td>6.3±6.7</td>
</tr>
<tr>
<td>EDSS at 1st visit (mean±SD)</td>
<td>1.3±1.1</td>
<td>1.4±0.8</td>
<td>1.4±1.1</td>
<td>1.3±0.8</td>
<td>1.4±1.2</td>
</tr>
</tbody>
</table>

NEDA: no attack, CDP at 2 consecutive semi-annual visits, new T2 or Gd+ DMT at 1st study visit: NONE 48%, IFN-B 36%, GA 15%, CTX 0.5%, NTZ 1%

Rotstein et al. Investigation of NEDA and long-term disability prediction in a seven year longitudinal MS cohort. ECTRIMS 2014 Boston.
Short Term NEDA: High PPV On Progression 7 Years Later

<table>
<thead>
<tr>
<th>NEDA Duration</th>
<th>No ½ step EDSS change from baseline at 7 years follow up</th>
<th>No 20% T25FW change from baseline at 7 years follow up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>72%</td>
<td>75-100%</td>
</tr>
<tr>
<td>2 years</td>
<td>78%</td>
<td></td>
</tr>
</tbody>
</table>

- Positive Predictive Value (PPV): proportions of positive results in a statistic that are true positive result
- PPV describe the performance of a diagnostic test. A high result can be interpreted as indicating the accuracy of such a test.

NEDA: no attack, Confirmed Disability Progression at 2 consecutive semi-annual visits, new T2 or Gd+ MRI lesions; Rotstein et al. Investigation of NEDA and long-term disability prediction in a 7 year longitudinal MS cohort. ECTRIMS 2014 Boston.
NEDA Association With Brain Atrophy & Functional Outcomes

Example in post hoc analysis in RRMS patients

<table>
<thead>
<tr>
<th>ASSOCIATED OUTCOME MEASURE</th>
<th>NEDA patients</th>
<th>NON-NEDA patients</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Decrease BPF</td>
<td>-0.15%</td>
<td>-0.28%</td>
<td>0.0055</td>
</tr>
<tr>
<td>PASAT Median Change</td>
<td>2.0</td>
<td>1.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>T25FW Median Change</td>
<td>0.0 sec</td>
<td>0.20 sec</td>
<td><0.0001</td>
</tr>
<tr>
<td>9HPT Median Change</td>
<td>-0.73 sec</td>
<td>-0.24 sec</td>
<td><0.0001</td>
</tr>
<tr>
<td>EDSS Improvement</td>
<td>36.9%</td>
<td>22.6%</td>
<td>0.0001 *</td>
</tr>
</tbody>
</table>

HR 1.9 [95% CI: 1.37-2.68]

NEDA: no relapse, no 3mo CDP EDSS, no Gd+, No N/E T2 lesions over 2 years

BPF: Brain Parenchymal Fraction; **PASAT:** paced auditory serial addition task; **T25FW:** timed 25 foot walk; **9HPT:** Nine Hole Peg Test; **EDSS:** Expanded Disability Status Scale; **EDSS improvement:** 3mo sustained decrease of ≥1.0 point. PP1216. Ruddick et al. EFNS European Journal of Neurology 21 (Suppl, 1): 388-713. *Post Hoc Analysis of AFFIRM*
No Evidence of Disease Activity 3

*Example in contemporary RRMS cohort*¹

![Bar chart showing comparison of NEDA proportions between IFN β-1a and Ocrelizumab.]

- **IFN β-1a 44 μg (n=375)**: 25.1%
- **Ocrelizumab 600 mg (n=379)**: 47.5%

89% improvement vs IFN β-1a

P < 0.0001

NEDA: no protocol-defined relapses, no confirmed disability progression events, no new or enlarging T2 lesions, and no Gd⁺ T1 lesions

Post Hoc analysis of pooled data from FREEDOMS I and FREEDOMS II.
GEL: Gad Enhancing Lesions; BVL: brain volume loss;
1. De Stefano N et al. AAN 2015. Abstract P3.246
No Evidence of Disease Activity 3

Example in Highly Active Patients Subgroup Analysis

Post Hoc Analysis of CARE-MS II trial. NEL: new/enlarging T2 lesion.

- **Freedom From Clinical Disease Activity**
 - IFN β-1a: 33%
 - Alemtuzumab: 61%

- **Freedom From MRI Disease Activity**
 - IFN β-1a: 7.5%
 - Alemtuzumab: 40%

- **Freedom From Demonstrable MS Disease Activity**
 - IFN β-1a: 0%
 - Alemtuzumab: 24%

Post hoc analysis (N = 145)

High disease activity defined as
≥2 relapses in year prior to randomization and ≥1 GEL on baseline MRI

- Relapse-free and absence of ≥1-point increase over baseline on EDSS for ≥6 months for 2 years.
- No new GEL and no NEL for 2 years.
- No clinical or MRI disease activity for 2 years.

No Evidence Of Disease Activity 3
Example in 6yr LTFU of Highly Active Patients Subgroup Analysis

Highly active disease was defined as ≥2 relapses in the year prior to randomization and ≥1 Gd-enhancing T1 lesion at core study baseline; NEDA: defined as absence of MRI disease activity and clinical disease activity (relapses and 6-month confirmed disability worsening, the latter defined as an increase from core study baseline of ≥1.0 EDSS point [or ≥1.5 points if baseline EDSS score=0]). Comi G et al. ECTRIMS 2016, Poster P613.
New Outcome Measures
Confirmed Disability Improvement
Confirmed Disability Improvement (CDI)

Improvement of at least 1 EDSS step maintained for at least 6 months*

*Calculations of CDI only include patients with baseline EDSS > 2.0 Dynamic variable.
“Sustained Improvement in Disability a” (aka CDI)
Example in Post Hoc Analysis in Highly Active RRMS cohort

*≥2 relapses in the year before study entry and ≥1 gadolinium enhancing lesion at study entry, baseline EDSS > 2
Defined as EDSS 1 point decrease sustained for 12 weeks.

Natalizumab Significantly Increases the Cumulative Probability of Sustained Improvement in Physical Disability POST HOC AFFIRM
F. Munschauer, et. al. Poster #P474 Presented at the World Congress in Treatment and Research in Multiple Sclerosis September 17-20, 2008
Confirmed Disability Improvement:
Example from contemporary RRMS cohort

Relative improvement: 33%
Relative risk (95% CI):
1.33 (1.05, 1.68); $P < 0.02$

Proportion of Patients Achieving 12 week CDI

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN β-1a 44 μg (n=614)</td>
<td>15.6</td>
</tr>
<tr>
<td>Ocrelizumab 600 mg (n=628)</td>
<td>20.7</td>
</tr>
</tbody>
</table>

Proportion of Patients With CDI for At Least 12 Weeks (Baseline EDSS ≥2.0)

OPERA I & OPERA II
Confirmed Disability Improvement

Example 6 year LTFU in absence of continuous treatment Highly Active RRMS cohort

- CDI (confirmed disability improvement) defined as ≥1-point EDSS decrease among the cohort of patients with baseline EDSS score ≥2.0.

- Number at risk is the number of patients who remained on study and who had yet to achieve CDI.

High disease activity defined as ≥2 relapses in year prior to randomization and ≥1 GEL on baseline MRI

Confirmed Disability Improvement:
Example in 5-year follow up of Highly Active Patients¹

HIGHER ACTIVELY CARE MS-II: Disability Through Year 5¹

<table>
<thead>
<tr>
<th>Year</th>
<th>≥1-Point Improvement</th>
<th>Stable (≤0.5-point change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y0-2</td>
<td>86.7</td>
<td>26.5</td>
</tr>
<tr>
<td>Y0-3</td>
<td>81.3</td>
<td>58.2</td>
</tr>
<tr>
<td>Y0-4</td>
<td>80.9</td>
<td>61.8</td>
</tr>
<tr>
<td>Y0-5</td>
<td>75.3</td>
<td>25.9</td>
</tr>
</tbody>
</table>

Entire CARE MS-II Cohort: Disability Through Year 5²

<table>
<thead>
<tr>
<th>Years 0–5 (n=325)</th>
<th>≥1-Point Improvement</th>
<th>Stable (≤0.5-point change)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76.6</td>
<td>51.7</td>
</tr>
</tbody>
</table>

Highly Active Disease: >2 attacks in year prior to randomization & ≥1 GEL at core baseline
1. Patients with highly active RRMS Despite Prior Therapy Show Durable Improvement with Alemtuzumab over 5 years. Singer et al. Poster DX17. CMSC 2016
2. Leganke, Boster et al. presentation DX02. CMSC 2016
Confirmed Disability Improvement:
Example in Propensity Matched Switches amongst active* patients from MSBase\(^1\) Registry

• After switch to natalizumab vs. after switch to fingolimod:

 • No between-group difference in rate of confirmed disability progression (CDP)

 • 2.8 x higher rate of confirmed disability improvement (CDI) observed after switch to natalizumab \((P < .001)\)

*Disease activity defined: patients with RRMS experiencing relapses or disability worsening within the 6 months preceding switch to either natalizumab or fingolimod; CDI: Confirmed Disability Improvement = improve \(\geq 1\) EDSS step for at least 6 months; CDP: Confirmed Disability Progression = worsen \(\geq 1\) EDSS step for at least 6 months

New Outcome Measures

No Evidence of Progression
No Evidence of Progression (NEP)

Measure in Primary Progressive Multiple Sclerosis

NEP = The combined absence of 12-week clinical progression as measured by:

- No 12-week confirmed progression on EDSS
- No 12-week confirmed ≥20% progression on 9HPT
- No 12-week confirmed ≥20% progression on T25FW

9HPT=9-hole peg test; EDSS=Expanded Disability Status Scale; NEP=no evidence of progression; PPMS=primary progressive multiple sclerosis; T25FW=timed 25-foot walk.

1. Adapted from Montalban X, et al. Presented at: ECTRIMS. 2016 (Presentation 167) ORATORIO
No Evidence of Progression (NEP)

Example in Primary Progressive MS

<table>
<thead>
<tr>
<th></th>
<th>Placebo (n=230)</th>
<th>Ocrelizumab (n=461)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEP Reference pop</td>
<td>Reference population excluding patients withdrawn for reasons other than efficacy failure or death prior to the Week 120 and without evidence of progression (n=41). Patients withdrawn due to efficacy failure or death are considered as having event.</td>
<td></td>
</tr>
<tr>
<td>NEP</td>
<td>29.1%</td>
<td>42.7%</td>
</tr>
<tr>
<td>No</td>
<td>63.0%</td>
<td>68.6%</td>
</tr>
<tr>
<td>No</td>
<td>38.7%</td>
<td>51.0%</td>
</tr>
<tr>
<td>No</td>
<td>71.3%</td>
<td>82.2%</td>
</tr>
</tbody>
</table>

47% relative increase in NEP with ocrelizumab

Relative risk (95% CI): 1.47 (1.17, 1.84), p=0.0006

Adapted from Montalban X, et al. Presented at: ECTRIMS. 2016 (Presentation 167). ORATORIO
New Outcome Measures
Improved Brain Atrophy Rates
RESULTS:

• Greater decrease of the corpus callosum volume at 6 months (HR 2.74; P = 0.001) was associated with increased cumulative risk of a second clinical attack between months 6 and 48.

• Greater lateral ventricle volume enlargement at 6 months (HR 2.43; P = 0.002) was associated with increased cumulative risk of a second clinical attack between months 6 and 48.

• Greater lateral ventricle volume enlargement at 6 months (HR 4.70; P = 0.001) was associated with increased risk of confirmed disability progression over 48 months.
Reduction in Brain Atrophy Rates
Example in contemporary RRMS cohort

OPERA II

Percentage Change in Brain Volume From Baseline to Week 96

<table>
<thead>
<tr>
<th>Week</th>
<th>IFN β-1a 44 μg</th>
<th>Ocrelizumab 600 mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>-0.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>48</td>
<td>-0.8</td>
<td>-1.2</td>
</tr>
<tr>
<td>96</td>
<td>-1.2</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

23.8% reduction in rate of brain volume loss vs IFN β-1a
P=0.0001

EDSS, Expanded Disability Status Scale; Gd+, gadolinium enhancing; IFN, interferon; ROW, rest of the world.
Reduction in Brain Atrophy Rates

Example in contemporary PPMS cohort

![Graph showing the reduction in brain atrophy rates with Ocrelizumab compared to Placebo. The graph illustrates the mean percent change from Week 24 in brain volume (mean, 95% CI).]

Relative Difference: 17.5% vs placebo

\[p = 0.02 \]

ITT population. \(p \)-value based on mixed-effect model repeated measure adjusted at Week 120 for week 24 brain volume, geographic region (United States vs ROW), and age (≤45, >45).

CI=confidence interval; ITT=intent-to-treat; MRI=magnetic resonance imaging.

Normalization of Brain Atrophy Rates in the Absence of Continuous Treatment

Example Alemtuzumab 6 year LTFU in RRMS population

BPF=brain parenchymal fraction

*Alemtuzumab vs SC IFNB-1a, P=0.0121.

[P1181] Alemtuzumab Durably Slows Brain Volume Loss Over 6 Years in the Absence of Continuous Treatment in Patients With Active RRMS Who Were Treatment-Naïve (CARE-MS I) or Had an Inadequate Response to Prior Therapy (CARE-MS II) Traboulsee A et al. ECTRIMS 2016, Poster P1181.
Reduced Rates of Brain Atrophy
Example: 5yr LTFU in RRMS cohort

CONCLUSIONS

- In this cohort of relapsing MS patients treated with natalizumab beyond 5 years in STRATA, annualized MRI disease activity burden remained extremely low.
- The mean rate of PBVC in this cohort is comparable with the estimated yearly rate of brain volume loss in healthy controls (0.1%–0.3%), measured using a variety of techniques.11
- These data suggest that with respect to MRI surrogate markers of brain tissue damage and disease activity/observed during the phase 3 trials are well maintained with long-term treatment.

1. Incorporate the following terms into your MS lexicon

 • Activity
 • Breakthrough Activity
 • Worsening
 • Progression

 • Highly Active MS
 • NEDA
 • CDI
 • NEP
 • Atrophy Rates

2. Adopt “Topographical Model of MS” into your delivery of MS care

3. Identify Breakthrough Activity & Highly Active disease

NEDA: No Evidence of Disease Activity; CDI: Confirmed Disability Improvement
NEP: No Evidence of Disease Progression
Take Home Points

- **Revised MS phenotypes** and new **Topographical Model** of MS provide **more accurate language** to describe the heterogeneous behavior of MS disease activity.

- Certain demographic, radiographic and clinical factors may aid in identifying patients at higher risk for faster worsening. Understanding the definitions of **breakthrough disease activity** and **highly active disease** aids in early identification.

- Contemporary outcome measures should **impact our expectations** of MS disease modifying therapies.